Эту задачу от советского математика могут решить лишь 20 процентов людей: проверьте, сможете ли вы!
Борис Анастасьевич Кордемский — российский и советский математик, методист, автор популярных книг и учебников. Он оказал большое влияние на популяризацию математики среди школьников. Сможете ли вы решить его задачи, над которыми в свое время сидели дети в 1950-х? Проверим!
Переправа через реку
Небольшой воинский отряд подошел к реке, через которую необходимо было переправиться. Мост сломан, а река глубока. Как быть? Вдруг офицер замечает у берега двух мальчиков в лодке. Но лодка так мала, что на ней может переправиться только один солдат или только двое мальчиков — не больше! Однако все солдаты переправились через реку именно на этой лодке. Каким образом?
Ответ
Мальчики переехали реку. Один из них остался на берегу, а другой пригнал лодку к солдатам и вылез. В лодку сел солдат и переправился на другой берег. Мальчик, остававшийся там, пригнал обратно лодку к солдатам, взял своего товарища, отвёз на другой берег и снова доставил лодку обратно, после чего вылез, а в неё сел второй солдат и переправился.
Таким образом после каждых двух перегонов лодки через реку и обратно переправлялся один солдат. Так повторялось столько раз, сколько было человек в отряде.
Четыре теплохода
В порту пришвартовались 4 теплохода. В полдень 2 января они одновременно покинули порт. Известно, что первый теплоход возвращается в этот порт через каждые 4 недели, второй — через каждые 8 недель, третий — через 12 недель, а четвёртый — через 16 недель. Когда в первый раз теплоходы снова сойдутся все вместе в этом порту?
Ответ
Наименьшее общее кратное чисел 4, 8, 12 и 16 — 48. Следовательно, теплоходы сойдутся через 48 недель, то есть 4 декабря.